Package ‘portfolioSim’

August 29, 2016
Title Framework for simulating equity portfolio strategies
Version 0.2-7
Date 2013-07-08

Author Jeff Enos <jeff@kanecap.com> and David Kane <dave@kanecap.com>,
with contributions from Kyle Campbell

<Kyle.W.Campbell@williams.edu>

Description Classes that serve as a framework for designing equity
portfolio simulations.

Maintainer Daniel Gerlanc <dgerlanc@enplusadvisors.com>
Depends R (>=2.10), methods, lattice, portfolio (>= 0.4.0)
License GPL (>=2)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2013-07-09 08:14:47

R topics documented:

portfolioSim-package 2
instantData-class e 3
loadIn e 4
orderable-class e e 5
periodData-class e e e e 5
portfolioSim-class 6
SaveOUL e e e e e e 7
sdiDf-class 8
simData-class e e 9
simDatalnterface-class 9
simResult-class e e 10
simResultSinglePeriod-class o o 11
simSummarylnterface-class 11
simTrades-class e 12

2 portfolioSim-package

simTradesInterface-class
StArMINE.SIM v v e e e e e e e e e e e e e e e
stiFromSignal-class L
stiPresetTrades-class

Index

portfolioSim-package Framework for simulating equity portfolio strategies

Description

Classes that serve as a framework for designing equity portfolio simulations.

Details
Package: portfolioSim
Version: 0.2-6
Date: 2010-02-18
Depends: R (>=2.4.0), methods, lattice, portfolio (>= 0.4-0)
License: GPL (>=2)
LazylLoad: yes
Index:
instantData-class Class "instantData”
loadIn Load data from various formats.
orderable-class Class "orderable”
periodData-class Class "periodData”
portfolioSim-class Class "portfolioSim”
portfolioSim-package Framework for simulating equity portfolio
strategies
saveOut Save data in various formats.
sdiDf-class Class "sdiDf"
simData-class Class "simData”

simDatalnterface-class

Class "simDatalnterface”
simResult-class Class "simResult”
simResultSinglePeriod-class

Class "simResultSinglePeriod”
simSummaryInterface-class

Class "simSummaryInterface”
simTrades-class Class "simTrades”
simTradesInterface-class

Class "simTradesInterface”
starmine.sim StarMine Rankings, 1995, and supplementary

instantData-class 3

data.
stiFromSignal-class Class "stiFromSignal”
stiPresetTrades-class Class "stiPresetTrades”

Further information is available in the following vignettes:

portfolioSim Performing equity investment simulations with the portfolioSim package (source, pdf)

Author(s)

Jeff Enos <jeff@kanecap.com> and David Kane <dave @kanecap.com>, with contributions from
Kyle Campbell <Kyle.W.Campbell @williams.edu>

Maintainer: Jeff Enos <jeff@kanecap.com>

instantData-class Class "instantData"

Description

Contains coross-sectional simulation data that pertains to a single instant in time, such as held
positions and exposures.

Objects from the Class

Objects can be created by calls of the form new("instantData”, ...).

Slots

instant: Object of class "orderable” specifying the instant to which the object pertains.

equity.long: Object of class "numeric” containing the total market value of held long positions
at this instant.

equity.short: Object of class "numeric” containing the total market value of held short positions
at this instant.

size.long: Object of class "numeric"” containing the total number of held long positions at this
instant.

size.short: Object of class "numeric” containing the total number of held short positions at this
instant.

holdings: Object of class "portfolio” reflecting the portfolio held at this instant in the simlua-
tion.

exposure: Object of class "exposure” containing exposures of the holdings portfolio to a set of
factors at this instant.

4 loadIn

Methods

saveOut signature(object = "instantData”, type = "character”, fmt = "missing"”, out.loc = "character”,
"character”, verbose = "logical"): save this object. Currently only one format, binary
.RData, is available, and so the fmt parameter is missing here.

Author(s)

Jeff Enos <jeff@kanecap.com>

See Also

periodData-class

loadIn Load data from various formats.

Description

Generic function for loading data into an object.

Usage

loadIn(object, in.loc, fmt, ...)
Arguments

object Object to be populated with data.

in.loc Location or origin of the data.

fmt Format in which the data is stored.

Any other parameters needed by the implementing method.

Value

The object with data loaded from in.loc, usually.

Author(s)

Jeff Enos <jeff@kanecap.com>

See Also

saveOut

orderable-class 5

orderable-class Class "orderable"”

Description

A class union of classes that can be used to order observations, in particular the periods of a simu-
lation. Currently, this includes numeric, character, logical, POSIXt, and Date.

Objects from the Class

A virtual Class: No objects may be created from it.

Author(s)

Jeff Enos <jeff@kanecap.com>

periodData-class Class "periodData"

Description

Contains data from the simulation that pertains to the passing of time during a period, such as
performance and trading activity.

Objects from the Class

Objects can be created by calls of the form new("periodData”, ...).

Slots

period: Object of class "orderable” specifying the period to which the object pertains.

turnover: Object of class "numeric” that contains the total value of trades, in a reference currency,
executed during the trading period.

universe.turnover: Object of class "numeric” that contains the total value of positions, in a
reference currency, that have exited the universe. Positions in securities held in the previous
period but delisted in this period would contribute to this value.

performance: Object of class "performance” specifying return and profit for the period.

contribution: Object of class "contribution” specifying contributions of various categories of
positions to total performance for the period.

trades: Object of class "trades” specifying the set of trades executed during this period.

Methods

saveOut signature(object = "periodData”, type = "character”, fmt = "missing"”, out.loc = "character
"character"”, verbose = "logical"): save this object. Currently only one format, binary
.RData, is available, and so the fmt parameter is missing here.

6 portfolioSim-class

Author(s)

Jeff Enos <jeff@kanecap.com>

See Also

instantData-class

portfolioSim-class Class "portfolioSim"

Description

When beginning a new simulation, the first step is to construct an object of class portfolioSim
which will contain all the information required by the simulator. An instance of class portfolioSim
represents a unique simulation, which can then be run at any time by calling the runSim method.

Objects from the Class

Objects can be created by calls of the form new("portfolioSim"”, o).

Slots

periods: A data frame listing the periods to be used in the simulation. Each period represents a
single iteration of the simulator, in which a new set of trades is calculated and carried out.
The periods data frame must have columns period, start, and end. The period column
contains labels which are used throughout the simulator to represent each period. The start
and end columns are used to differentiate between saved data from before and after the trades
are performed in each period. Generally, these columns should contain the actual dates corre-
sponding to each period.

freq: The annual frequency of the periods listed in the periods slot. For example, the frequency
corresponding to the periods data frame shown above is be 4. When running a simulation with
monthly periods, the frequency should be 12. With daily periods, it should be 252, the total
number of trading days in a year.

trades.interface: A tradesinterface object of some class containing the virtual class simTradesInterface.
The trades interface represents the implementation of the trading stategy to be tested in the
simulation. Based on the current portfolio and the data available for a given period, the trades
interface contains some mechanism for determining a set of trades to make. These trades are
encapsulated in a simTrades object which the interface returns to the simulator.

data.interface: A datainterface object of some class containing the virtual class simDataInterface.
The data interface serves to transform the raw data used in the simulation into an object of class
simData, containing information on a single period.

summary.interface: An optional summary interface object of a class containing the virtual class
simSummaryInterface. The summary interface allows the user to specify information to be
saved out during the simulation beyond that supported by the result classes instantData and
periodData.

saveOut

start.holdings: A portfolio object representing the portfolio at the start of the simulation. If this

slot is not specified, the simulator starts with an empty portfolio. See the documentation in the
portfolio package for information on constructing a portfolio.

fill.volume.pct: Object of class "numeric” describing the maxiumum percentage of the daily

trading volume of a stock that the simulator is allowed to trade in a single period. The default
is 15. If set to Inf, all trades produced by the trades interface will be done, regardless of
whether some of the associated securities are absent in sim data or have an NA market data
for the period.

exp.var: An object of class "character” listing additional variables to be used when analyzing

the exposures for each period.

contrib.var: Object of class "character” listing additional variables to be used when analyzing

the contributions for each period.

out.loc: Object of class "character” describing the location at which to save the results of the

simulation.

out.type: Object of class "character” listing the types of data to be saved out.

Methods
initialize signature(.0Object = "portfolioSim"): Checks for and initializes preset type com-
binations.
runSim signature(object = "portfolioSim”): Run the simulation.
Author(s)

Jeff Enos <jeff@kanecap.com>

saveOut Save data in various formats.

Description

Generic function for saving an object.

Usage
saveOut(object, type, fmt, out.loc, name, verbose, ...)
Arguments
object Object to save.
type Type of saving to perform, such as saving partial data from an object.
fmt Format in which to save.
out.loc Location in which to store the data.
name Name for the saved object.
verbose Whether the saving process should display informative output.

Any other parameters needed by the implementing method.

8 sdiDf-class

Value

The object just saved, usually.

Author(s)

Jeff Enos <jeff@kanecap.com>

See Also

loadIn

sdiDf-class Class "sdiDf"

Description

Class "sdiDf" is an interface for converting an object of class "data.frame” into an object of class
"simData".

Objects from the Class

Objects can be created by calls of the form new("sdiDf", oY)

Slots

data: Object of class "data.frame” storing the data to be used in the simulation.

Extends

Class "simDatalnterface”, directly.

Methods

getSimData signature(object = "sdiDf", period = "orderable”, verbose = "logical”):
Returns an object of class "simData” containing the data for only that period specified by
period.

Author(s)

Jeff Enos <jeff@kanecap.com>

simData-class 9

simData-class Class "simData"

Description

Class "simData" stores the data to be used in the simulation.

Objects from the Class
Objects can be created by calls of the form new("”simData”, o)
Slots
data: Objectof class "data.frameOrNull"” with columns "period", "id", "start.price", "end.price",
and "ret".
Author(s)

Jeff Enos <jeff@kanecap.com>

simDatalnterface-class
Class "simDatalnterface"

Description

Virtual class that must be extended to provide data for the periods of a simulation.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "simDatalnterface" in the signature.

Author(s)

Jeff Enos <jeff@kanecap.com>

10 simResult-class

simResult-class Class "simResult"

Description

The highest level object that contains simulation result data.

Objects from the Class

Objects can be created by calls of the form new("”simResult”, ...).

Slots

freq: Object of class "numeric” that specifies the frequency of periods in the simulation with
respect to a year. A value of 1 indicates annual periods, 12 monthly periods, etc.

data: Object of class "1ist” that contains singlePeriodResult objects for each period.

errors: Object of class "1ist” that contains a record of any errors caught during the processing
of each period.

type: Object of class "character” that specifies the type of data contained in this object. Usually
pertains to partial saving of period and instant information.

summary.interface: Object of class "simSummaryInterfaceOrNull” that can be used as an ad-
ditional saving filter for single-period results.

Methods

loadIn signature(object = "simResult”, in.loc = "character”, fmt = "missing"):
load in the simulation data stored in in.loc. Currently only one format, binary .RData, is
available, and so the fmt parameter is missing here.

plot signature(x = "simResult”, y = "missing"): plot simulation results.

saveOut signature(object = "simResult"”, type = "missing”, fmt = "missing”, out.loc = "character"”, name
"missing”, verbose = "logical"): save this object. Currently only one format, binary
.RData, is available, and so the fmt parameter is missing here.

summary signature(object = "simResult"): summarize the simulation.

Author(s)

Jeff Enos <jeff@kanecap.com>

simResultSinglePeriod-class 11

simResultSinglePeriod-class
Class "simResultSinglePeriod"

Description

Contains simulation result data for a single period.

Objects from the Class

Objects can be created by calls of the form new("”simResultSinglePeriod”, ...).

Slots

start.data: Object of class "instantData” that contains cross-sectional data as of the start of
the period.

end.data: Object of class "instantData” that contains cross-sectional data as of the end of the
period.

period.data: Object of class "periodData” that contains data for the period involving the pas-
sage of time.

Methods
loadIn signature(object = "simResultSinglePeriod”, in.loc = "character”, fmt = "missing"):
load in the simulation data stored in in.loc. Currently only one format, binary .RData, is
available, and so the fmt parameter is missing here.
saveOut signature(object = "simResultSinglePeriod”, type = "character”, fmt = "missing"”, out.loc =
"missing”, verbose = "logical"): save this object. Currently only one format, binary
.RData, is available, and so the fmt parameter is missing here.
Author(s)

Jeff Enos <jeff@kanecap.com>

simSummaryInterface-class
Class "simSummarylnterface"

Description

The summary interface allows the user to specify information to be saved out during the simulation
beyond that supported by the result classes instantData and periodData.

12 simTrades-class
Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "simSummaryInterfaceOrNull”, directly.

Methods

No methods defined with class "simSummaryInterface" in the signature.

Author(s)

Kyle Cambell <Kyle.W.Campbell@williams.edu>

simTrades-class Class "simTrades"

Description

Class "simTrades" stores a list of trades to be made in a single period.

Objects from the Class

Objects can be created by calls of the form new("”simTrades”, Lol)

Slots

period: Object of class "orderable” representing a single period for which these trades should
be performed.

trades: Object of class "trades” containing the trades to be performed during this period.

Author(s)

Jeff Enos <jeff@kanecap.com>

simTradesInterface-class 13

simTradesInterface-class
Class "simTradesInterface"

Description

Virtual class that must be extended to provide the simulator with the set of trades to execute during
each period. The trades returned by the interface represent the implementation of the trading stategy
tested in the simulation.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "simTradesInterface" in the signature.

Author(s)

Jeff Enos <jeff@kanecap.com>

starmine.sim StarMine Rankings, 1995, and supplementary data.

Description

StarMine rankings of some stocks in 1995, with the minimal set of supplementary data required for
running a simulation.

Usage

data(starmine.sim)

Format

A data frame with 53328 observations on the following 14 variables.

date Date on which the observation was recorded. The dates have a monthly frequency. Dates
range from 1995-01-31 to 1995-11-30.

id Unique identifier for each stock.

name Full company name.

country Country of the exchange on which the company is listed.

sector Sector to which the stock belongs.

14 stiFromSignal-class

cap.usd Market capitalisation of the company in USD.

size cap.usd normalized to N(0,1).

smi StarMine Indicator (smi) score for each security and date if a score was issued.
fwd.ret.1m 1 month forward return.

fwd.ret.6m 6 month forward return.

price.usd Adjusted price, in USD, of the security at the end of the period specified by date.

prior.close.usd Adjusted price, in USD, of the security at the end of the period prior to the
period specified by date.

volume Adjusted volume of the security on the last day of the period specified by date.
ret.1m Total return for the period (month) specified by date.

Source

StarMine Corporation. For more information, see http://www.starmine.com.

Examples

data(starmine.sim)
head(starmine.sim)

stiFromSignal-class Class "stiFromSignal"

Description

Class "stiFromSignal" is an interface that stores information regarding portfolio formation and trad-
ing to be used in determining trades during the simulation.

Objects from the Class

Objects can be created by calls of the form new("”stiFromSignal”, L)

Slots
in.var: Object of class "character” representing a column in the data interface to be used the
"in.var" for creating portfolios.
type: Object of class "character” representing the type of weight calculation to be used.

size: Object of class "characterOrNumeric” representing the size of the portfolio to be created
during the simulation.

sides: Object of class "character” containing "long", "short", or both, indicating the type of
portfolio to be created.

equity: Object of class "numeric” representing the equity for the portfolio.

target: Object of class "environment” representing the environment in which to search for the
target portfolio.

http://www.starmine.com

stiPresetTrades-class 15

rebal.on: Object of class "orderable” containing the periods at which the portfolio should be
rebalanced during the simulation.

trading.style: Object of class "character” representing the trading style to use during the sim-
ulation. Defaults to "immediate".

chunk.usd: Object of class "numeric” specifying the size of chunk to use in the interface’s tradelist
generation algorithm. May be ignored depending on which trading.style is used. Defaults
to 50000.

turnover: Object of class "numeric” specifying the turnover limit to use in the interface’s tradelist
generation algorithm. May be ignored depending on which trading.style is used. Defaults
to Inf (no limit).
Extends

Class "simTradesInterface”, directly.

Methods

initialize signature(.Object = "stiFromSignal"): Initializes the interface by setting the target
environment.

getSimTrades signature(object = "stiFromSignal”, period = "orderable”, holdings =
"logical”): Returns an object of class "simTrades” containing all the trades that should be
made for this period.

Author(s)

Jeff Enos <jeff@kanecap.com>

stiPresetTrades-class Class "stiPresetTrades"

Description

A trades interface that provides a predetermined set of trades for instructional purposes.

Objects from the Class

Objects can be created by calls of the form new("”stiPresetTrades”, ...).

Slots
periods: Object of class "orderable” containing the periods for which trades are available.

sim.trades: Object of class "1ist"” containing the trades for each period.

Extends

Class "simTradesInterface”, directly.

"portfolio”, sim.da

16 stiPresetTrades-class

Methods
getSimTrades signature(object = "stiPresetTrades"”,period = "orderable”, holdings = "portfolio”, sim.d
"simData”, verbose = "logical"): get the trades for period.
Author(s)

Kyle Cambell <Kyle.W.Campbell@williams.edu>

Index

xTopic classes loadIn,simResult,character,missing-method
instantData-class, 3 (simResult-class), 10
orderable-class, 5 loadIn,simResultSinglePeriod, character,missing-method
periodData-class, 5 (simResultSinglePeriod-class),
portfolioSim-class, 6 11
sdiDf-class, 8
simData-class, 9 orderable-class, 5
simDatalnterface-class, 9
simResult-class, 10 periodData-class, 5
simResultSinglePeriod-class, 11 plot,simResult,missing-method
simSummaryInterface-class, 11 (simResult-class), 10
simTrades-class, 12 portfolioSim (portfolioSim-package), 2
simTradesInterface-class, 13 portfolioSim-class, 6
stiFromSignal-class, 14 portfolioSim-package, 2
stiPresetTrades-class, 15
*Topic datasets runSim (portfolioSim-class), 6
starmine.sim, 13 runSim,portfolioSim,logical-method
*Topic methods (portfolioSim-class), 6
loadIn, 4
saveOut, 7 saveQut, 4, 7
*Topic package saveQOut, instantData,character,missing,character,character,
portfolioSim-package, 2 (instantData-class), 3
saveOut,periodData,character,missing,character,character,1l
Date-class (orderable-class), 5 (periodData-class), 5

saveOut,simResult,missing,missing,character,missing,logica
(simResult-class), 10

saveOut,simResultSinglePeriod, character,missing,character,
(simResultSinglePeriod—classL

getSimData (sdiDf-class), 8

getSimData, sdiDf,orderable,logical-method
(sdiDf-class), 8

getSimTrades (stiFromSignal-class), 14

getSimTrades,stiFromSignal,orderable, portfol1gdf6ngf§S;o§1cal -method
(stiFromSignal-class), 14 1mData ~class, 9

getSimTrades, stiPresetTrades,orderable portfoll Pﬁ%@r% @ia t&od

(stiPresetTrades- class) 15 51mResu1t—c1ass,10

simResultSinglePeriod-class, 11

simSummaryInterface-class, 11

simSummaryInterfaceOrNull-class
(simSummaryInterface-class), 11

simTrades-class, 12

simTradesInterface-class, 13

loadIn, 4, 8 starmine.sim, 13

initialize,portfolioSim-method
(portfolioSim-class), 6

initialize,stiFromSignal-method
(stiFromSignal-class), 14

instantData-class, 3

17

18 INDEX

stiFromSignal-class, 14

stiPresetTrades-class, 15

summary, simResult-method
(simResult-class), 10

	portfolioSim-package
	instantData-class
	loadIn
	orderable-class
	periodData-class
	portfolioSim-class
	saveOut
	sdiDf-class
	simData-class
	simDataInterface-class
	simResult-class
	simResultSinglePeriod-class
	simSummaryInterface-class
	simTrades-class
	simTradesInterface-class
	starmine.sim
	stiFromSignal-class
	stiPresetTrades-class
	Index

